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Synchronized traffic flow from a modified Lighthill-Whitman model
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A simple macroscopic argument leading to a diffusively corrected form of the classical kinematic-wave
~Lighthill-Whitham! model of the flow of vehicular traffic is described. An example of a diffusively corrected
kinematic-wave model displays a diffusion coefficient that is negative, for sufficiently large densities. It is
shown that such a diffusively corrected kinematic-wave model is capable of reproducing elements of the
synchronized flow reported by Kerner and Rehborn.

PACS number~s!: 47.20.Gv, 89.40.1k, 05.10.2a, 05.20.Dd
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The author and Sopasakis have recently@1# shown that:
~i! the zero-order Chapman-Enskog approximation to
classical Prigogine-Herman@2# kinetic equation of vehicular
traffic is a Lighthill-Whitham model, which consists of th
continuity equation,

]r

]t
1

]q

]x
50,

and a classical traffic stream modelq5Q0(r); ~ii ! the cor-
responding first-order Chapman-Enskog approximation,
therefore presumably the proper traffic-theoretic analog
the Navier-Stokes equations of fluid dynamics, is a dif
sively corrected Lighthill-Whitham model. Such a mod
consists of the continuity equation and a diffusively co
rected traffic stream model,

q~x,t !5Q0„r~x,t !…2D„r~x,t !…
]r

]x
~x,t !. ~1!

Lighthill and Whitham themselves@3# expressed consider
able skepticism about the validity of classical traffic stre
models. They further suggested an extension that contain
diffusive term, which was considered as representing an
pation. Schochet@4# showed that the entropy weak solutio
of the Lighthill-Whitham model are the limits, as the co
stant in a diffusive coefficient of the form const3r21 tends
to zero, of the solutions of the corresponding diffusively c
rected Lighthill-Whitham model.

If an additive diffusive correction to the traffic strea
model improves on Lighthill-Whitham models, then
should be possible to establish a simple phenomenolog
basis for such a correction. This would be analogous to
phenomenological basis for the Navier-Stokes equations
asserted well before thetour de forcefor atomistic theory
comprised by the demonstrations of Chapman and of Ens
that the Navier-Stokes equations follow from the Boltzma
equation, complete with prescriptions for the diffusion co
ficient and viscosity, in terms of an intermolecular force la
Toward establishing such a phenomenological basis, n
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that if drivers intend to act so as to adjust their speed to
local density of vehicles at any given position and time, th
that intention inevitably is somewhat frustrated by the ex
tence of somereaction timet, representing a delay in thei
response to events. I assume that drivers compensate fo
delay by adjusting to the density seen at someanticipation
distance Lahead of their current position. In view of th
reaction time and the anticipation length, the actual~mean!
speed at positionx and timet will then be

v~x,t !5V„r~x1L2Vt,t2t!…,

whereV(r) is the ~mean! desired speed at densityr.
If the right-hand side is expanded to first order int andL,

and higher-order terms are ignored, then after a bit of alge
results are

qªrv5Q0~r!1r$LV8~r!1tr@V8~r!#2%
]r

]x
.

This has precisely the form of Eq.~1!, with the diffusion
coefficient given by

D~r!52LrV8~r!2tr2@V8~r!#2. ~2!

This equation displays the diffusion coefficient as thedif-
ferenceof two non-negative terms, asV8 is nonpositive. One
would normally expectD to be non-negative, as this is ne
essary in order for the corresponding initial-value problem
be well-posed.~For the first-order Chapman-Enskog appro
mation to the Prigogine-Herman kinetic equation, which
valid only up to some ‘‘critical’’ density, this result is prove
in @1#.! Presumably this expectation is reflected in the te
dency of drivers to anticipate so as to more than compen
for the reaction time, so that the first term in Eq.~2! would
normally be larger in magnitude than that associated with
reaction time. However, it is certainly conceivable that the
are situations in which reaction delay dominates anticipati
so that the resulting diffusion coefficient is negative.

In order to explore this issue further, as well as to obt
an order-of-magnitude estimate of the diffusion coefficie
consider the Dick@5# modification of the traffic stream
model of Greenberg@6#,
R6052 ©2000 The American Physical Society
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V~r!5min$vmax,C ln~rmax/r!%,

with the freeflow speedvmax570 miles per hour, the jam densityrmax5220 vehicles per lane-mile, and the ‘‘free’’ paramet
C510e ~miles per hour!. The corresponding value ofV8 is

V8~r!5H 0, r,e27/ermaxª r̂'0.076rmax

210e/r'227.2/r, r.e27/ermax'0.076rmax

miles2 per hour,
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with densities in units of miles per hour. For purposes of
order-of-magnitude discussion I shall take the reaction t
as t52 sec50.000 555 5. . . h, which is a typical time for
driver reaction~e.g.,@7#!. Similarly, I shall take the anticipa
tion length asL5v2/15 800, which is the distance~in miles!
required to decelerate to a full stop fromv miles per hour, at
a relatively comfortable deceleration of about 0.1g. The cor-
responding diffusion coefficient is plotted, as a function
density, in Fig. 1.

For this situation, the diffusion coefficient is positive fo
r,r0'124.6 vehicles per mile, but is~slightly! negative
for r.r0. Therefore, the corresponding diffusively correct
Lighthill-Whitham model may be mildly unstable for dens
ties abover0. We may expect this instability effect for eve
smaller densities, and perhaps at a more severe level, i
anticipation length were not be taken as large as assu
above. This might arise, for example, at roadway locatio
providing limited sight distance ahead, or near entra
ramps, at which drivers ability to anticipate conditions ahe
is reduced by the necessity to accommodate merging
hicles. Negative diffusion coefficients are known to be as
ciated with a number of interesting phenomena@8#.

I now turn to the issue of the consistency of synchroniz
flow @9# with the diffusively corrected Lighthill-Whitham
model just described. For this purpose I understand ‘‘s
chronized flow’’ as traffic flow in which speeds are synchr
nized across lanes, and those speeds are too low to be
sidered free flow, but too high to be considered a traffic ja
In order to reproduce theoretically this aspect of traffic flo
one needs some model that provides speeds that are sp

FIG. 1. Dependence of the diffusion coefficient upon densit
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to individual lanes. Several such models exist~e.g., @10#!.
However, any realistic lane-specific model should reflect
natural desire~and ability! of drivers in a slower moving lane
to transfer to a faster moving lane, and that effect should t
to equilibrate the speed across lanes, as suggested in@11#.
Therefore, this aspect of synchronized flow does not seem
challenging theoretically. The further observation that ‘‘sy
chronized traffic flow covered on the flux-density plane tw
dimensional regions’’ is rather a different matter, as elab
rated further below. However, that issue can be addres
without lane-specific models, because it can be viewed
relating to the behavior of trafficafter the equilibration of
speeds across lanes has been achieved, so that there is
incentive for lane switching to occur.

In addition, Kerner and Rehborn@9# describe types~i!,
~ii !, and ~iii ! of synchronized traffic flow, and assert th
‘‘each of these three types of states of synchronized tra
flow covered on the flux-density plane two-dimensional
gions.’’ The diffusive correction to the flow permits this po
sibility, in contrast to the kinematic-wave model itself, whic
predicts that all traffic states must lie along the curveq
5Q0(c) ~i.e., the ‘‘static’’ traffic stream model! in the
density/flow plane. But can this possibility be realized in
manner that is consistent with the other essential obse
properties of synchronized flow, as embodied in their de
ing descriptions? An outline of an affirmative answer to th
question will now be provided analytically, for the case
type ~ii ! synchronized flow. A similar demonstration can b
provided for type~i! synchronized flow.

Type (ii) synchronized flow.Type ~ii ! synchronized flow
is described@9# as ‘‘states, where the average speed w
nearly a stationary one during a relatively long time interv
but the flux, i.e., the density, noticably changed during t
time interval.’’ Accordingly, I seek solutions of the diffu
sively corrected Lighthill-Whitham model that further satis
q5wr, wherew is independent of bothx and t. ~The defin-
ing statement quoted above requires only thatw be indepen-
dent of time; the literature seems silent on spatial homo
neity, although the terminology ‘‘homogeneous-in-spee
@12# is strongly suggestive.! With the continuity equation,
this requires solutions of type~ii ! have densities that satisf
r(x,t)5c(x2wt), wherec is an arbitrary function. The dif-
fusively corrected ‘‘dynamic’’ traffic stream model the
yields the equation

D~c!
dc

dx0
5Q0„c~x0!…2wc~x0!, ~3!
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wherex0 is the initial location of the ‘‘wave’’ moving along
the characteristicx5x01wt ~andw is the associated ‘‘wave
speed’’!.

Equation~3! is an ordinary differential equation that ca
in principle, be solved for an initial-density profile,r(x0,0)
5c(x0), which will possibly evolve into a flow of type~ii !.
It is possible to give an exhaustive analysis of the beha
of the solutions of this equation. Here I shall only note a f
cases, in order to illustrate that even this subclass of type~ii !
solutions occupies a significant two-dimensional region
the density/flow plane.

Let rw denote the root ofQ(r)5wr.

ii-a. If Q0(r0)/r0,w,vmax, then the solution corre
sponding to an initial valuer(x1) such thatr̂,r(x1),rw
approachesrw , asymptotically asx→`. @This type of solu-
tion appears to correspond to the interior of what would
seen as a shock in the Lighthill-Whitham theory. It joi
smoothly to ~stable! downstream flow at densityrw and
speedw.#

ii-b. If Q0(r0)/r0,w,vmax, then the solution corre
sponding to an initial valuer(x1) such thatrw,r(x1),r0
approachesrw , asymptotically asx→`. ~A solution of this
type appears to have some similarity to what is frequen
termed ‘‘queue discharge.’’ As in the preceding case, t
flow joins smoothly to a stable downstream flow at dens
rw and speedw.

ii-c. If w,Q0(r0)/r0, then the solution corresponding t
any initial valuer(x1) such thatr0,r(x1),rw approaches
r0 in finite length.@This is our final solution that lies in the
region where the diffusion coefficient is negative. The fa
that drivers are maintaining speedw here means they ar
reacting~by increasing their speeds! too slowly to the de-
creasing downstream density to maintain flow at the~now
unstable! equilibrium corresponding to densityrw and speed
w. This flow ultimately must undergo a discontinuity at
before the pointr(x)5r0, where the second-order parabo
diffusively corrected Lighthill-Whitham model degenerat
into a first-order hyperbolic equation, in order to provide
connection to any downstream flow.#

ii-d. If w,Q0(r0)/r0, then the solution corresponding t
any initial valuer(x1) such that max$rw ,r0%,r(x1),rmaxap-
proachesrmax in finite length.~This corresponds to flow in a
region that is controlled by a downstream jam; that is, this
flow in a transition to a jam. In maintaining speedw, drivers
are going faster than predicted by the static traffic stre
model, and all the more faster than warranted by downstre
conditions. This reflects the fact that the diffusion coefficie
is negative, because reaction dominates anticipation.!

The regions of the density/flow plane that are covered
these four cases of type~ii ! synchronized flow are shown, i
relation to the ‘‘static’’ traffic flow model, in Fig. 2. This
figure illustrates that these classes alone of type~ii !
synchronized-flow solutions of the diffusively correcte
Lighthill-Whitham model cover a significant two
dimensional region in the density/flow plane. Other su
type ~ii ! synchronized-flow solutions of the diffusively co
rected Lighthill-Whitham model@i.e., other solutions of the
differential equation ~3!# provide even further two-
dimensional coverage of the density/flow plane.
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The most striking, and apparently unrealistic, feature
Fig. 2 is the rather large flows predicted for type ii-b sy
chronized flow. The largest flows occur whenw is slightly
less thanvmax and r is slightly less thanr0. It is hard to
conceive of how this situation could initially occur, but th
theory predicts that if it did, and the speed werew along a
density profile satisfying Eq.~3!, then that speed would b
maintained along that profile as it moves at speedw. How-
ever, along the density profile corresponding to a speed
w565 miles per hour, the density would drop from 120 v
hicles per mile to approximately 33 vehicles per mile, with
a length of about 0.1 miles. Therefore, the theory also p
dicts that such flows are nonsustainable, and in fact un
servable for all practical purposes. There are other practic
nonexistent flows among the synchronized flows of types~i!
and~ii ! that are revealed by the approach demonstrated h
This fact notwithstanding, there remain sufficient of the
flows ~e.g., type ii-b flow corresponding to smaller values
the speed! to occupy a significant region of the density/flo
plane. The larger point is that not all instances of the type
synchronized flow shown here to result from the diffusive
corrected kinematic-wave model are equally likely to be o
served.

Conclusions. A diffusive correction to the Lighthill-
Whitham kinematic-wave model is readily justified, on th
basis of the familiar phenomena of driver anticipation a
reaction time. Yet this simple extension of the Lighthi
Whitham model can provide significantly different predi
tions of traffic flow, especially in regions of large gradien
in the concentration, or in which the diffusion coefficie
takes on a negative value. Here it has been shown that
a diffusive correction can reproduce significant elements
the synchronized flow described by Kerner and Rehborn@9#.

It would be most interesting to explore the extent to whi
a diffusively corrected kinematic-wave model is able to
produce other observed traffic-flow patterns and phenom
including ‘‘wide traffic jams’’ @13#, specific properties of
phase transitions@14#, the existence of a line dividing the
density/flow into ‘‘stable’’ and ‘‘metastable’’ regions with
regard to perturbations leading to phase transitions@15#, and
the oscillations noted by Koshi, Iwasaki and Ohkura@11#.

FIG. 2. The regions of the density/flow plane covered by
enumerated instances of type~ii ! synchronized flow.
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Such explorations are given further impetus by the rec
independent confirmation by Neubertet al. @16# of the three
phases of traffic flow suggested by Kerneret al. This is im-
portant, because Banks@17# had previously noted that som
-
ry

r.
ntof the observations of Kerneret al. could be attributed sim-
ply to statistical fluctuations in the data. This now see
rather less likely, although perhaps it cannot yet be ruled
altogether.
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